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Abstract

Statistical models for environmental monitoring strongly rely on automatic data acqui-
sition systems, using various physical sensors. Often, sensor readings are missing for
extended periods of time while model outputs need to be continuously available in real
time. With a case study in solar radiation nowcasting, we investigate how to deal with5

massively missing data (around 50 % of the time some data are unavailable) in such
situations. Our goal is to analyze the characteristics of missing data and recommend
a strategy for deploying regression models, which would be robust to missing data in
situations, where data are massively missing. We are after one model that performs
well at all times, with and without data gaps. Due to the need to provide instanta-10

neous outputs with minimum energy consumption for computing in the data streaming
setting, we dismiss computationally demanding data imputation methods, and resort
to a simple mean replacement. We use an established strategy for comparing differ-
ent regression models, with the possibility of determining how many missing sensor
readings can be tolerated before model outputs become obsolete. We experimentally15

analyze accuracies and robustness to missing data of seven linear regression models
and recommend using regularized PCA regression. We recommend using our estab-
lished guideline in training regression models, which themselves are robust to missing
data.

1 Introduction20

Environmental monitoring strongly relies on automatic data acquisition systems, us-
ing various physical sensors. For instance, SMEAR stations1 measure the relation-
ship of atmosphere and forest in boreal climate zone (Hari and Kulmala, 2005). They
are equipped with an extensive range of measurement interests: atmospheric and flux
measurements, irradiation and flux measurements, tree physiology measurements, soil25

1http://www.atm.helsinki.fi/SMEAR/
7138

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.atm.helsinki.fi/SMEAR/


AMTD
7, 7137–7174, 2014

Regression models
tolerant to massively

missing data

I. Žliobaitė et al.
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and soil-water measurements, and solar irradiance. Due to the continuous flux of mea-
surements, the setup can be put to the framework of streaming data. Statistical models
built on such streaming data, see e.g. (Hrust et al., 2009; Lu et al., 2006; Menut and
Bessagnet, 2010), need to operate continuously and provide outputs in real time.

Physical sensors are exposed to various risks due to severe environmental condi-5

tions, exposure to physical damage or battery drainage. Under such circumstances it
is very common to have time intervals when data from some of the sensor readings
are missing. A lot of advanced missing value imputation schemes have been devel-
oped (Junninen et al., 2004; Allison, 2001) primarily targeting offline exploratory data
analysis, where computational resources are practically unlimited and it is critical to10

reconstruct data as accurately as possible. A simple mean replacement remains pop-
ular in regression modeling (Kadlec et al., 2009), in situations where real time outputs
are needed, computational resources and time are limited, but the input data does not
need to be reconstructed perfectly accurately as long as model outputs remain correct.

The goal of this study is to experimentally analyze the performance and robustness15

of linear regression models to massively missing data for operation in resource aware
settings. We consider the situations where data are massively missing, which means
that around 50 % of the time at least one sensor does not deliver readings and there
is no single sensor that dominates the missing data, data from any sensor can be
missing. In such a situation, readings from input sensors may be missing for extended20

periods of time, but nevertheless, model outputs need to be produced continuously
and delivered in real time, withholding from making model outputs when some data
are missing is not an option. We aim at building one regression model that is robust
in performance, i.e. the expected performance is stable no matter how many sensor
readings are missing.25

We present a case study in solar radiation nowcasting using meteorological sensor
data as inputs, where multiple sensor failures happen frequently due to environmen-
tal and operational reasons. We analyze the performance of seven linear regression
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models coupled with mean replacement of missing values, and provide recommenda-
tions for robust and accurate modeling in such circumstances.

The paper presents a case study, where our earlier published results (Žliobaitė and
Hollmén, 2013), are put to practice in a solar radiation nowcasting problem in the con-
text of a SMEAR measurement station (Hari and Kulmala, 2005). The reader inter-5

ested in the theoretical underpinnings of our approach and a follow up is advised to
read studies (Žliobaitė and Hollmén, 2013, 2014), whereas the current paper focuses
on practical implications of the results, and demonstrates how regression problems
with lots of missing data can be successfully solved with our recommended scheme.
The results apply to the case of linear regression coupled with mean replacement of10

missing values.
Research attention to solar radiation nowcasting and short term forecasting using

statistical data driven models is increasing due to growing popularity of solar energy
plans, that need forecasts for planning. Research studies mostly focus on searching
for a suitable statistical modeling technique: artificial neural networks (Marquez and15

Coimbra, 2011), autoregressive time series models (Bacher et al., 2009), Markov mod-
els (Bhardwaj et al., 2013), or optimally integrating different data sources, such me-
teorological variables, ground and remote sensing observations, or satellite images
(Hammer et al., 1999; Vuilleumier et al., 2011). We are not aware of any research work
addressing the problem of massively missing values in solar radiation forecasting.20

The rest of the paper is organized as follows. Section 2 describes the SMEAR data
used in the case study, the methodology of the modeling, and the experimental proto-
col. Section 3 presents and discusses the results of the case study. Section 4, summa-
rizes the contributions and concludes the study.
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2 Materials and methods

2.1 Data

We use a data stream recorded at SMEAR II station in Hyytiälä, Finland (Junninen
et al., 2009) (61◦50′51′′ N, 24◦17′41′′ E, 181 m a.s.l.), measuring the forest ecosystem–
atmosphere relationships. We use data over seven years period (April 2005–April5

2013), recorded every 30 min from 37 observation sensors. The data coming from the
station has on average 7 % of missing values. Missing values may occur due to oc-
casional failure of measuring sensors, wear and tear, or variations in electricity power
supply. At least some data are missing 50 % of the time. There is no single sensor that
would provide non interrupted readings over those five years; for any sensor from 1 %10

(about 4 days per year) up to 25 % (3 months per year) values are missing.
The task is to nowcast the current level of solar radiation from the meteorological

sensor data given in Table 1. Incoming radiation to the earth is constant (with the
accuracy we care about) in a given time of the year and hour. The only unknown is
the absorption in atmosphere and more importantly in the clouds and anthropogenic15

pollution plumes. Hence, an interesting variable to infer is the cloudiness, or, in other
words, the deviation of the measured radiation from the theoretical maximum. In this
schema, other meteorological parameters could be used to estimate the cloudiness
and this can further used to calculate the actual radiation, but the primary variable to
nowcast is the difference between the theoretical and actual radiation.20

This nowcasting task would be relevant to the stations where no radiation measures
are available. The station SMEAR II, from which the input data originate, can measure
solar radiation; hence, the true values are available for us for evaluation purposes.
However, instrumentation for measuring solar radiation is not always available. Small
meteorological observation stations may not be able to afford to have solar radiation25

measured, but it may be interesting to nowcast radiation from meteorological data that
is available anyway.
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We define the target variable as the ratio: the actual radiation divided by the the-
oretical maximum radiation. This gives a value between 0 and 100 %, where 100 %
indicates that all the theoretically possible radiation is actually incoming. The sensor
Global RADIATION (Table 1) is not used as model input, it is only used for evaluating
the nowcasting accuracy. It indicates the actual radiation and is used in forming the5

target variable.
The theoretical maximum radiation is calculated using MIDC SOLPOS Calculator2.

SOLPOS is a computational tool that calculates the apparent solar position and inten-
sity (theoretical maximum solar energy) based on the date, time, and location on Earth.
The tool is developed (written in C) and maintained by The National Renewable Energy10

Laboratory, which is operated for the US Department of Energy by the Alliance for Sus-
tainable Energy. The calculations are based on established models for solar position
reported in (Michalsky, 1988) and other sources.

The following input parameters were used: Lat: 61.8475, Lon: 24.29472, time zone: 2
(location parameters), surface pressure 990 mbar, ambient dry-bulb temperature 3 ◦C,15

azimuth of panel surface 180◦, degrees tilt from horizontal of panel 0, solar irradiance
constant 1360.8 W m−2 (Kopp and Lean, 2011), shadow-band width 7.6 cm, shadow-
band radius 31.7 cm, shadow-band sky factor 0.04, interval of a measurement period
0 s.

The sensor readings are often correlated with each other. Figure 1 visualizes the20

pairwise correlations computed over non-missing data. We see distinct blocks of posi-
tive and negative correlations. For instance, relative humidity (RH) is negatively corre-
lated with temperature (T ).

2http://www.nrel.gov/midc/solpos/solpos.html
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2.2 Prerequisites

2.2.1 Setting

Suppose we have r sources generating streaming data (e.g. weather observation sen-
sors). Data are recorded in multidimensional vectors x ∈Rr . Our task is to nowcast
the target variable y ∈R1 (e.g. solar radiation) from these sensor readings as inputs.5

The regression model is then y = f (x) = f (x1, . . . ,xr ), and the corresponding learning
task is to learn the approximate the function f from the available input-output data. It is
important to note that we do not make use of temporal information of the variables, that
is, we predict the value of the output y at time t, with the sensor readings available at
the same time point t, hence the task is referred to as nowcasting. With the time index,10

the regression model is y (t) = f (x1
(t), . . . ,xr

(t)). In the rest of the paper, we omit the time
index t. For the identities of the sensors used in the case study (r = 36), see Table 1.

Data arrive in real time, and nowcasting needs to be delivered as soon as possi-
ble, in nearly real time. The nowcasting performance should be stable in a sense that
the expected loss in accuracy due to possible missing values should be minimal. Hav-15

ing in mind that often environment monitoring sensors are operating on batteries, or
autonomous power sources, consumed computational resources for data processing,
including missing value imputation, should be minimal.

2.2.2 Imputation of missing data

We assume that when a sensor fails, the missing values are automatically replaced20

with the mean value, which remains to be a popular approach in practice due to its
simplicity and low user cost (Black et al., 2007; Kadlec et al., 2009; Enders, 2010).
To keep the focus, we also assume that there is no need for any king of data driven
missing value detection, the system knows when a value is missing.

In this study, we do not consider alternative imputation methods due to two reasons.25

Firstly, our main goal is to investigate the robustness of regression models to missing
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data rather than select the best imputation scheme. Secondly, advanced model based
imputation methods such as linear interpolation, nearest neighbor imputation, self orga-
nizing map or multilayer perceptron methods (Junninen et al., 2004) typically are more
accurate when the amount of missing data is small, but lose their advantage when long
missing data gaps are expected; while multiple imputation methods (Junninen et al.,5

2004) bear relatively high computational costs and are favorable in once-off imputation
operations, but are not very suitable for continuous online operations and imputation in
real time. More importantly, such methods implicitly or explicitly assume that data are
missing at random, i.e. a sensor value being missing is independent both of observ-
able variables and of unobservable parameters of interest. In reality this assumption10

may often be violated, for instance, sensors going off at low temperatures.
One could make imputation models using knowledge about physical relationships

between variables. However, when a lot of data is missing, such approach would en-
counter a combinatorial explosion. There would need to be a model for each combina-
tion of missing variables, that means building and maintaining 2r models, where r is15

the number of input features.

2.2.3 Performance indicators

We use a nowcasting error as the main measure of the performance, which is com-
puted on a subset of data that was not used for parameter estimation (Hastie et al.,
2001). The mean squared error (MSE) is a popular measure to quantify the discrep-20

ancy between the true target value y and the value output by the model ŷ . MSE pun-
ishes large deviations from the true values that is relevant in environmental monitoring
applications, where large errors are to be avoided. For practical interpretability RMSE
is often used, which is the square root of MSE, it reports the error in the same units as
the target variable. For a test dataset MSE and RMSE are computed as25

MSE =
1
n

n∑
l=1

(ŷ (l ) − y (l ))2,RMSE =
√

MSE, (1)
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where y (l ) is the true target value of the l th sample and ŷ (l ) is the corresponding model
output, n is the number of samples in the test set. In the experiments we report RMSE,
which can be interpreted as an average deviation of model outputs from the true target
values.

2.3 Computational methods5

2.3.1 Linear regression model

For nowcasting, we consider linear regression models, which assume that the relation-
ship between r input variables x = (x1, . . . ,xr ) and the target variable y is linear. Without
loss of generality we assume that the input data are standardized before modeling to
have zero mean and unit variance3. The regression model takes the form10

y = b1x1 +b2x2 + . . .+brxr +ε = xβ+ε (2)

where ε is the error variable and the vector β = (b0,b1,b2, . . . ,br )
T contains the pa-

rameters of the linear model (regression coefficients). Since the data are assumed to
have been standardized there is no bias term in the model. In matrix form, the model15

is y = Xβ+ε, where Xn×r is a sample data matrix containing n records from r sensors,
and yn×1 is a vector of the corresponding n target values.

2.4 Ordinary least squares

There are different ways to estimate the regression parameters (Hastie et al., 2001).
Ordinary least squares (OLS) is a simple and probably the most common estimator. It20

3For standardization we need to estimate the data mean m and the standard deviation s
from a sample dataset, then xstandardized = (x−m)/s. For every variable we need to store the
values m and s and to apply the same procedure to the new incoming data before nowcasting.
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minimizes the sum of squared residuals giving the following solution

β̂OLS = argmin
β

(
(y −Xβ)T(y −Xβ)

)
= (XTX)−1XTy, (3)

Having estimated a regression model β̂ nowcasting on new data xnew can be made as

ŷ = xnewβ̂. (4)5

2.4.1 Regularization

If the input variables are correlated with each other, the optimization problem could
result in poor estimates for the parameters In such situations, regularization is often
used for estimating the regression parameters. The Ridge regression (RR) (Hoerl and10

Kennard, 1970; Hastie et al., 2001) regularizes the regression coefficients by imposing
a penalty on their magnitude. RR solution minimizes the following cost function

β̂RR = argmin
β

(
(y −Xβ)T(y −Xβ)+ λβTβ

)
= (XTX+ λI)−1XTy, (5)

15

where λ > 0 controls the amount of shrinkage: the larger the value of λ, the greater the
amount of shrinkage. X denotes the n× r training dataset and y is the n×1 vector of
the true target values, I is the r × r identity matrix. Nowcasting on new data xnew can
be made as

ŷ = xnewβ̂RR. (6)20

2.4.2 Principal component regression

Principal component (PCA) regression (Jolliffe, 2002) first transforms the input data by
rotating it towards its principal components and then estimates the regression coeffi-
cients on the transformed data.25
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Let Xn×r be the training data matrix and Rr×k is the matrix of k principal components,
corresponding to the largest eigenvalues. Here k is a user defined parameter such that
1 ≤ k ≤ r , if k = r then PCA regression becomes the ordinary regression. Then OLS
gives the following solution on the transformed input data

β̂?
PCA

= argmin
β

(
(y −XRβ?)T(y −XRβ?)

)
, (7)5

and in the original data space the solution is
β̂PCA = Rβ̂

?
PCA. Nowcasting on new data xnew can be made as

ŷ = xnewRβ̂?
PCA

= xnewβ̂PCA. (8)
10

2.4.3 Partial least squares regression

Partial least squares (PLS) regression is very popular in chemometrics (Wold et al.,
2001). Similarly to PCA, the input data are transformed, but instead of maximizing the
variance of the input data (as in PCA) this transformation maximizes the covariance
between input variables and the target. There is no convenient analytical solution for15

optimization, instead an iterative optimization is employed for parameter estimation.
The procedure is presented in Algorithm 1. Here k is a user defined parameter such
that 1 ≤ k ≤ r , if k = r then PLS regression becomes the ordinary regression.

Nowcasting on new data xnew can be made as

ŷ = xnewβ̂PLS. (9)20

2.5 Estimating robustness of linear regression models to missing data

For linear regression models it is possible to determine theoretically how many miss-
ing inputs can be tolerated before model outputs become obsolete. We can estimate
robustness of a linear regression model to potentially missing input data using the de-25

terioration index (Žliobaitė and Hollmén, 2013), which is defined as

d = −βT(Σ− I)β, (10)
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where β is a vector of the regression coefficients, assuming that the input variables
have been standardized to zero mean and unit standard deviation, Σ is the covariance
matrix of the input data and I is the identity matrix. High values of the index d indicate
low tolerance to missing data. The prediction errors will increase fast with the number
of missing inputs. The smaller d , the more robust to missing data the model is. d can5

be negative, that is the best option.
Low d guarantees robustness to missing data, but the models with low d do not

necessarily give good predictions when all the data are available. Hence, a tradeoff
between accuracy and robustness needs to be found, the following method can help to
find it.10

Suppose we get two models A and B, and we would like to select one for deployment.
We can measure their prediction errors on a training dataset using cross-validation,
RMSE(A) and RMSE(B) respectively. We can also compute deterioration indices d (A)

and d (B). Without loss of generality assume that RMSE(A) ≥ RMSE(B), i.e. model B
shows a better prediction accuracy when no data are missing. If d (A) ≥ d (B), then model15

B is also more robust. In such a case model B is better (or at least as good) in both
characteristics, and hence B is preferred over A.

If, however, d (A) < d (B), then we can find, how many input readings can go missing
before A becomes better than B. The number m? can be computed as (Žliobaitė and
Hollmén, 2013)20

m? = (r −1)
[RMSE(A)]2 − [RMSE(B)]2

d (B) −d (A)
, (11)

where r is the total number of input sensors.
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2.6 Experimental protocol

2.6.1 Data preparation and preprocessing

Solar radiation readings (target variable) are available 99 % of the time. We eliminate
from the experiment the samples where no target value is available, since we cannot
use such samples neither for model training, nor can we measure the model accuracy5

on them.
The following pre-processing of the target values is performed. If the measured so-

lar radiation is negative, it is set to be zero. If the measured solar radiation exceeds
the theoretical (maximum) radiation, the measurement is corrected to be equal to the
theoretical radiation. In practice, this can happen when during a cloudy day the sky10

is clear where sun is shining, but a cloud cover is elsewhere. The cloud reflects back
more back-reflected radiation that the blue sky. For simplicity, at this stage we do not
consider this effect in this modeling.

Exploratory analysis of missing data is performed on the full dataset. For analysis the
model accuracies we use the first three years of data as a training set and the remaining15

four years as the testing set. We assume the scenario where an analyst is currently
at the end of year three, and all the previous three years of data are available for
model calibration. After modeling and calibration is done, an online operation scenario
is assumed, where the testing data (four years) arrive in the sequential order.

From the training set we eliminate all the observations that contain any missing val-20

ues (34 % of train data). The testing set contains all samples no matter whether some
values in the input data are missing. In addition, we eliminate from the training and test-
ing sets all the observations where the value of theoretical radiation is 0 (the periods
of dark), since then the value of the target variable is also 0, which can be nowcasted
with 100 % accuracy, while when performing experimental comparison of models we25

are interested in accuracies of non-trivial nowcasting tasks.
The training data are standardized to have zero mean and unit standard devia-

tion. The testing data are preprocessed by subtracting the mean and dividing by the
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standard deviation calculated on the training set. After standardization we replace all
the missing values in the testing set by zeros and test the regression models.

2.6.2 Regression models used in the experiments

We experimentally analyze seven regression models summarized in Table 2.
ALL uses all r sensors as inputs. SEL selects k sensors that have the largest abso-5

lute correlation with the target variable (correlation is measured on the training data)
and builds a regression model on those k sensors. PCA rotates the input data using
principal component analysis, k features corresponding to the largest eigenvalues are
retained, and then builds a regression model on those k new features. PLS rotates
input data to maximize the covariance between the inputs and the target. We keep k10

new features.
ALL, SEL and PCA use the ordinary least squares optimization procedure (OLS) for

parameter estimation. In addition, we test the same approaches but using the regular-
ized Ridge regression (RR), these models are denoted as ALLr, SELr and PCAr. PLS
uses its own iterative optimization procedure, which is not regularized.15

In addition, we compare the performance to a naive baseline NAI, which makes
a constant output that the radiation will be the same as the average radiation in the
training data.

2.6.3 Software and hardware

The experiments are performed in MATLAB 2012b using in-house produced code (no20

extra packages are required) on a commodity laptop computer (Processor 2.5 GHz
Intel Core i5; Memory 8 GB 1600 MHz DDR3). The dataset used in this study and the
code for the experiments are available4 for research purposes.

4http://users.ics.aalto.fi/indre/smear.zip
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3 Results and discussion

3.1 Analysis of missing data characteristics

We first analyze how missing values occur in the case study dataset. Figure 2a
presents the distribution of missing sensors. We see that about half of the time noth-
ing is missing, and half of the time observation vectors are incomplete. Over 35 % of5

the time 2–4 sensors are missing. The mean number of missing sensors over all the
dataset is 2.4. We observe from the data that up to 36 sensors (that is all the input
sensors) may be missing at a time. From this analysis we conclude that the amount of
missing data is at a massive scale and scope, and missing values needs to be taken
into consideration when building nowcasting models on this data. This also demon-10

strates the failure of case deletion approach in the deployment of prediction models.
One may consider that removing one or two sensors that have the largest amount

of missing values from the dataset could solve the problem. That could help if mostly
the same sensors were missing all the time. We can analyze in which way individual
sensors are missing by the following experiment. First, we remove a sensor with the15

most missing values from the dataset, this way the observation vectors at each 30 min
time stamp become shorter, they now include 35 sensors instead of 36. Given the
updated observation vectors we recalculate how many of those vectors contain at least
one missing value. Then we remove the next most missing sensor and repeat the
calculation. Figure 2b presents the results. We see that removing a couple of largely20

missing sensors does not make the remaining observations complete. We would need
to remove about half of the sensors in order to reach the stage where at least 95 % of
the data are complete. The problem with this approach is that sensors to be removed
may carry important information about the target, which would be lost if a lot of those
sensors are removed. Figure 2c presents relation between the missing data rate in25

each sensor and the information about the target contained in it, measured as the
absolute linear correlation with the target variable. We have removed the periods where
the value of the target is equal to zero (the dark periods when there is no solar radiation)
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from this analysis. We see some sensors in the far right corner and upper center that
have high missing value rate, but also high correlation with the target variable. This
means that excluding sensors with high missing value rates would lead to losses of
valuable information about the target that would be useful for nowcasting.

One more issue with the data is that sensors produce missing values not indepen-5

dently from each other. For example, if one temperature value is missing, then it is
likely that the other temperature values are missing as well. It may be the case that
sensors are missing together due to some common external reasons, for instance,
electric power outages. This observation is illustrated by Fig. 3, which plots pair-wise
correlations between missing values for different sensors. Sensors that often are miss-10

ing together are encoded in black (dark). We see that particularly temperatures (T ),
relative humidity (RH), visibility and precipitation readings are often missing together.
This means that we cannot rely on redundancy of the sensors such that if say a tem-
perature reading is missing at 33 m, we can use the reading at 50 m. Both readings
would often be missing together.15

Finally, in many cases the average duration of missing values lasts for several hours.
Figure 4 presents the average duration of missing values in the case study dataset
for each sensor. Since values may be missing for extended periods of times, from this
perspective we also cannot simply discard data with missing values, since in such
cases we often would not have model outputs for extended periods of time.20

In summary, the amount of missing data is very large, at this level data with missing
sensors cannot be discarded without losing valuable information. Missing values are
strongly correlated with each other that makes it difficult and in many cases impossible
to make use of sensor redundancy or impute missing data based on non-missing data.
Removing sensors with the most missing data is also not feasible, since missing values25

are not concentrated in several sensors, but they are distributed across all the sensors
and the sensors with a lot of missing values at the same time carry relatively strong
information about the target at times when the values are not missing. Hence, the
most appropriate solution to the problem of missing values in this setting appears to
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be building models that are robust to missing data. This approach is free from any
assumptions about the missing data and allows nowcasting even when all or nearly all
the sensors are missing.

3.2 Prediction accuracy

Next we experimentally analyze accuracies of several linear regression models and5

their robustness to missing values. The first experiment demonstrates how we can
select the best model for deployment. The second experiment presents evidence about
the performance on unseen data.

Table 3 presents the errors of the regression models ALL, rALL, SEL, rSEL, PCA,
rPCA, PLS measured on the training set using 5-fold cross validation and deterioration10

index estimated on the training set. For PCA, rPCA and PLS the number of compo-
nents was fixed to k = 18, which is a half of the original number of input sensors, and
explains 99 % of the variance. The cumulative percent variance method was used for
selecting k, which is recommended as one of the most reliable methods in the literature
(Valle et al., 1999). Figure A1 in the Appendix provides a complementary information15

about the variance explained by PCA components. Later in this section we will provide
a sensitivity analysis to different values of k.

This analysis is performed from the perspective on an analyst, making a decision
on which model to deploy. Cross validation is used to avoid potential overfitting of the
model parameters to the training data. Complementary information on the goodness of20

fit and confidence intervals of the regression coefficients is presented in Appendix B.
In case the analyst bases the decision only on the offline analysis of validation errors,

she would select ALL for deployment, since it shows the lowest error, while PCA and
rPCA show nearly the highest error. However, the deterioration indexes computed for
these models suggest the opposite: rPCA shows the best, while ALL shows the worst25

deterioration index value. The analyst now can theoretically compare the robustness of
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two models, for instance, ALL and PCA, using the criteria from Eq. (11), which gives

m? = (r −1)
[RMSE(PCA)]2 − [RMSE(ALL)]2

d (ALL) −d (PCA)

= (36−1)
(21.8)2 − (19.0)2

1122710− (−117)
≈ 10−4.

The result m? = 10−4 means that, if we expect at least one sensor reading to be missing5

in ten thousand observations, it is better to deploy rPCA than ALL. Recall that in the
data about 2.4 sensors are missing on average in every observation. Hence, in this
situation it is clearly worth deploying rPCA, instead of a standard linear regression,
even though the ordinary regression may be more accurate when no data is missing.

Let us consider the regularized version of ordinary regression rALL and rPCA. rALL10

shows better cross-validation accuracy than rPCA on the training data, and not that
bad deterioration index, as ALL. For rALL and rPCA m? = 0.4, which means that it is
still worth deploying rPCA.

How about non regularized PCA? The performance of PCA and rPCA seems very
close to each other. For PCA and rPCA m? = 13.1, which means that rPCA is expected15

to be more accurate if more than 13 sensors are missing, which is a bit too pessimistic
for our case study data. Hence, the analysis suggests to chose PCA for deployment.
the test set, which we analyze.

The following analysis simulates online operation after deployment. The regression
models are trained on the training set and then sequentially tested on the test set.20

Table 4 reports the testing results of the regression models ALL, rALL, SEL, rSEL,
PCA, rPCA, PLS (k = 18).

The regularized principal component regression rPCA demonstrates the best per-
formance on the test data (RMSE = 19.49), closely followed by PCA without regular-
ization (RMSE = 19.52). The other regularized approaches outperform rSEL and rALL25

perform notably worse (RMSE = 20.43 and 20.28), but still outperform the naive base-
line NAI (RMSE = 22.88). The unregularized approaches PLS, SEL and ALL perform
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much worse than the baseline and illustrate well the dangers presented by massively
missing values.

It is interesting to note that the analyzed strategy combining linear regression with
mean replacement Žliobaitė and Hollmén (2013) theoretically approaches NAI perfor-
mance as more values go missing. If all the input values are missing, then the predictor5

becomes NAI automatically.
To analyze the performance further we divide the test data into non-missing (44 %)

and missing observations (56 %) parts and inspect the errors on these sub-sets sepa-
rately. We see that the performance data of all the models is similar when there is no
missing data, with the ordinary regression ALL having an advantage in accuracy, since10

it does not discard any information from the input data. However, the non-regularized
models (ALL, SEL and PLS) fail badly when there is missing data, while the regularized
rSEL and rALL lose some accuracy, but still remain competitive. Both non-regularized
and regularized PCA remain nearly insensitive to missing data.

Figure 5 plots the distribution of absolute residuals for each approach. We can see15

that most of the errors (residuals) are concentrated around 10, which is not bad, given
that the range of the target variable is from 0 to 100. It means that most of the pre-
dictions do not deviate too much from the true. We can also see that NAI has less
probability mass on the left hand side, where the most accurate predictions are. As
expected, intelligent predictors do better than NAI. Only the unregularized approaches20

ALL and SEL have any probability mass on the far right, which means that they oc-
casionally produce predictions that may exceed the maximum of the true target. We
can conclude from this investigation, that predictions by most of the approaches are
reasonably stable, and outliers in predictions do not pose any major threats.

Next, let us analyze sensitivity to the parameter setting. So far we used a fixed num-25

ber of components (k = 18) for PCA, rPCA, PLS and the same number of selected
features for SEL and rSEL. Figure 6 the testing errors (RMSE) as a function of k.

An important observation can be made from this plot. The regularized approaches
rSEL, rPCA performs reasonably well at all variants of the parameter k, while the

7155

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 7137–7174, 2014

Regression models
tolerant to massively

missing data

I. Žliobaitė et al.
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non-regularized models SEL, PCA and PLS perform poorly when a large number of
components is retained. In such a case the resulting models are still similar to ALL,
which uses all the available information. ALL, rALL and NAI do not depend on the pa-
rameter k, but are also included for comparison. We also observe that PLS becomes
very effective at low k, but there is a risk of setting k incorrectly (e.g. around 25) in5

which case PLS gives the worst results. Therefore, we rather recommend using rPCA,
which gives stable and accurate results even in k is sub-optimal.

Finally, we visually analyze the model outputs made by the baseline approach ALL
and the recommended regularized approach rPCA (k = 18). Figure 7 plots four 3 day
snapshots from year 2012: 1–3 January, 1–3 April, 1–3 July and 1–3 October. It is10

important to emphasize that here we plot the raw outputs of the classifiers to better
illustrate the effects of regularization, whereas when calculating the numerical errors
we post-process all the model outputs to fall into the same interval as the original
target ([0,100], where 0 means no irradiance is observed, and 100 (%) means all the
theoretically possible irradiance is observed). That is, if the prediction is less than 0,15

we correct it to 0, and if the prediction is larger than 100, we correct it to 100. That
makes the baseline classifiers more competitive (and hence is more prudent way of
quantitative evaluation). We see from the figure that the baseline ALL sometimes fails
to extremes (particularly in January and April plots), while the regularized approach
rPCA remains stable. In July there are only a couple situations when ALL has very20

poor performance (we see a green inclination on day #2 and a green peak on day #3).
In October both approaches perform similarly. Unlike ALL, rPCA perform stable and
does not show extreme failures.

4 Summary and conclusions

In environmental monitoring, continuous and comprehensive measurement of the en-25

vironment leads to streaming data setting. Nowcasting in such settings is a demand-
ing task. We performed a case study in modeling solar radiation based on SMEAR
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measurement data set, where model outputs are expected to be available continuously
in spite of often missing sensor readings. We also experimentally analyzed the missing
data patterns in our data set.

We aimed at nowcasting the amount of global radiation, relative to the theoretical
maximum, with the help of measured meteorological variables. Due to the need to pro-5

vide instantaneous outputs in the data streaming setting, as well as limited computing
power, especially when operating on autonomous power sources, we dismiss any of
the sophisticated data imputation methods, which are computationally more demand-
ing. We experimentally analyzed accuracies and robustness to missing data of seven
linear regression models, and recommend using regularized PCA regression. The re-10

sults apply to linear regression models coupled with replacement of missing values by
a constant (mean).

The strategy that we consider does not require any sophisticated missing value im-
putation, just replacing the values with pre-defined constants. Linear regression is also
very light computationally, it only requires r multiplications, where r is the number of15

input variables, and one summation. When the model is trained, it can be recorded and
operate with minimal energy consumption. If, in addition to that, we consider a compu-
tationally heavy imputation procedure, such as Expectation Maximization algorithm, it
would require by orders of magnitude more computing power, and would be the domi-
nating computing operation.20

The regression itself is a powerful model, particularly considering that, if desired, one
could apply non-linear transformations to the input features, which then would make
the resulting predictions non-linear with respect to the inputs. More importantly, linear
models are theoretically well understood, and can provide guarantees with respect to
performance when there is a lot of missing data. We would argue that in such situations25

robustness of the model may be more important than flexibility. A flexible model may
on average be more accurate, but the outputs may be extremely wrong at times. On
the other hand, a robust model may be not the most accurate on average, but its
performance would be stable and the errors not too large at all times. We chose linear
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models, since they have theoretical guarantees for robustness. Hence, we recommend
using our established guideline in training regression models, which themselves are
robust to missing data.

Appendix A: Parameter selection

Figure A1 presents information on the variance explained by PCA components.5

Appendix B: Goodness of fit

Table B1 presents fitness statistics of the regression models to the training data. The
coefficient of determination R2 indicates the amount of total variability explained by the
regression model. The coefficient is computed as

R2 = 1−
∑n

l=1(ŷ (l ) − y (l ))2∑n
l=1(y (l ) − y)2

,10

where y (l ) is the true target value of the l th sample and ŷ (l ) is the corresponding model
output, y is the mean of the true target values, and n is the number of samples in the
train set. We see that the best fit model is ALL. Recalling the experimental analysis
in Sect. 3 we can see that good fitness to the training data does not guarantee good15

generalization performance when a lot of missing values start to appear.

The Supplement related to this article is available online at
doi:10.5194/amtd-7-7137-2014-supplement.

Acknowledgements. This work has been supported by the Academy of Finland grant 118653
(ALGODAN), and grant 258568 (MultiTree).20

7158

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/amtd-7-7137-2014-supplement


AMTD
7, 7137–7174, 2014

Regression models
tolerant to massively

missing data

I. Žliobaitė et al.
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Table 1. Sensors for the case study: SWS – surface wetness sensor, P – pressure, T – temper-
ature, WS – wind speed, WD – wind direction, RH – relative humidity, RH Td -relative humidity
calculated using dew point, PTG – potential temperature gradient, Vis – visibility.

index measurement height missing values

1 Rain 18.0 m 1 %
2 SWS 18.0 m 1 %
3 Dew point 18.0 m 18 %
4 P 0.0 m 2 %
5 T 4.2 m 16 %
6 T 8.4 m 3 %
7 T 16.8 m 2 %
8 T 33.6 m 2 %
9 T 50.4 m 2 %
10 T 67.2 m 2 %
11 WS 33.6 m 9 %
12 WS 8.4 m 5 %
13 WS 16.8 m 3 %
14 WS 33.6 m 9 %
15 WS 74.0 m 25 %
16 WD avr 2 %
17 WD ultrasonic 8.4 m 7 %
18 WD ultrasonic 16.8 m 4 %
19 WD ultrasonic 33.6 m 9 %
20 WD ultrasonic 74.0 m 23 %
21 RH 4.2 m 21 %
22 RH 8.4 m 9 %
23 RH 16.8 m 7 %
24 RH 33.6 m 7 %
25 RH 50.4 m 9 %
26 RH 67.2 m 6 %
27 RH Td 18.0 m 20 %
28 PTG 5 %
29 Visibility 18.0 m 1 %
30 Vis-min 18.0 m 1 %
31 Vis-max 18.0 m 1 %
32 Precipitation intensity 18.0 m 1 %
33 Preci-min 18.0 m 1 %
34 Preci-max 18.0 m 1 %
35 Precipitation 18.0 m 1 %
36 Snowfall 18.0 m 1 %
37 Global RADIATION 18.0 m 1 %
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Table 2. Summary of regression models: OLS – ordinary least squares, RR – Ridge regression.

Optimization
OLS RR

Inputs

all r ALL rALL
selected k SEL rSEL

PCA k PCA rPCA
PLS k PLS
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. 10-fold cross validation errors (RMSE) measured on the training dataset and deterio-
ration index (d ).

ALL rALL SEL rSEL PCA rPCA PLS

RMSE 19.0 21.6 20.5 21.9 21.7 21.8 20.8
d 1 122 710 537 362 708 451 −109 −117 6121
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Table 4. Nowcasting errors (RMSE) on the testing dataset.

ALL rALL SEL rSEL PCA rPCA PLS NAI

full set 175.8 20.4 127.8 20.3 19.5 19.5 25.7 22.9

non-missing 17.9 19.2 18.8 19.7 19.6 19.6 19.3 22.9
missing 233.4 21.3 169.2 20.7 19.4 19.4 29.7 22.9
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table B1. Fitness statistics of the models on the training data.

ALL rALL SEL rSEL PCA rPCA PLS

RMSE 19.2 21.2 20.5 21.6 21.8 21.8 20.9
R2 0.501 0.393 0.436 0.373 0.361 0.361 0.410
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Žliobaitė et al: Regression models tolerant to massively missing data 5

their magnitude. RR solution minimizes the following cost
function

β̂RR = argmin
β

(
(y−Xβ)T (y−Xβ) +λβTβ

)
290

= (XTX +λI)−1XTy, (5)

where λ > 0 controls the amount of shrinkage: the larger the
value of λ, the greater the amount of shrinkage. X denotes
the n×r training dataset and y is the n×1 vector of the true295

target values, I is the r× r identity matrix. Nowcasting on
new data xnew can be made as

ŷ = xnew β̂RR. (6)

2.4.2 Principal component regression

Principal component (PCA) regression (Jolliffe, 2002) first300

transforms the input data by rotating it towards its principal
components and then estimates the regression coefficients on
the transformed data.

Let Xn×r be the training data matrix and Rr×k is the ma-
trix of k principal components, corresponding to the largest305

eigenvalues. Here k is a user defined parameter such that
1≤ k ≤ r, if k = r then PCA regression becomes the ordi-
nary regression. Then OLS gives the following solution on
the transformed input data

β̂?PCA = argmin
β

(
(y−XRβ?)T (y−XRβ?)

)
, (7)310

and in the original data space the solution is
β̂PCA = Rβ̂?PCA. Nowcasting on new data xnew can be
made as

ŷ = xnewRβ̂?PCA = xnew β̂PCA. (8)

2.4.3 Partial least squares regression315

Partial least squares (PLS) regression is very popular in
chemometrics (Wold et al., 2001). Similarly to PCA, the in-
put data are transformed, but instead of maximizing the vari-
ance of the input data (as in PCA) this transformation maxi-
mizes the covariance between input variables and the target.320

There is no convenient analytical solution for optimization,
instead an iterative optimization is employed for parameter
estimation. The procedure is presented in Algorithm 1. Here
k is a user defined parameter such that 1≤ k ≤ r, if k = r
then PLS regression becomes the ordinary regression.325

Nowcasting on new data xnew can be made as

ŷ = xnew β̂PLS . (9)

2.5 Estimating robustness of linear regression models to
missing data

For linear regression models it is possible to determine the-330

oretically how many missing inputs can be tolerated before

Algorithm 1: PLS regression
Data: training set (X,y), number of components k
Result: estimated regression coefficients β̂PLS

1 for i← 1 to k do
2 wi←XT y/

√
yT XXT y ;

3 ti←Xwi ;
4 qi← tT

i y/(tT
i ti);

5 pi←XT ti/(t
T
i ti);

6 X←X− tip
T
i (data deflation step);

7 y← y− tiqi (data deflation step);
8 end
9 W← (w1,w2, . . . ,wk);

10 P← (p1,p2, . . . ,pk);
11 q← (q1, q2, . . . , qk)T ;
12 β̂PLS = W(PT W)−1q

model outputs become obsolete. We can estimate robustness
of a linear regression model to potentially missing input data
using the deterioration index (Žliobaitė and Hollmén, 2013),
which is defined as335

d =−βT (Σ− I)β, (10)

where β is a vector of the regression coefficients, assuming
that the input variables have been standardized to zero mean
and unit standard deviation, Σ is the covariance matrix of
the input data and I is the identity matrix. High values of the340

index d indicate low tolerance to missing data. The prediction
errors will increase fast with the number of missing inputs.
The smaller d, the more robust to missing data the model is.
d can be negative, that is the best option.

Low d guarantees robustness to missing data, but the mod-345

els with low d do not necessarily give good predictions when
all the data are available. Hence, a tradeoff between accuracy
and robustness needs to be found, the following method can
help to find it.

Suppose we get two models A and B, and we would like350

to select one for deployment. We can measure their pre-
diction errors on a training dataset using cross-validation,
RMSE (A) and RMSE (B) respectively. We can also compute
deterioration indices d(A) and d(B). Without loss of general-
ity assume that RMSE (A) ≥ RMSE (B), i.e. model B shows355

a better prediction accuracy when no data are missing. If
d(A) ≥ d(B), then modelB is also more robust. In such a case
model B is better (or at least as good) in both characteristics,
and hence B is preferred over A.

If, however, d(A) < d(B), then we can find, how many in-360

put readings can go missing beforeA becomes better thanB.
The numberm? can be computed as (Žliobaitė and Hollmén,
2013)

m? = (r− 1)
[RMSE (A)]2− [RMSE (B)]2

d(B)− d(A)
, (11)

where r is the total number of input sensors.365

Algorithm 1. PLS regression.
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Table 1. Sensors for the case study: SWS - surface wetness sensor, P
- pressure, T - temperature, WS - wind speed, WD - wind direction,
RH - relative humidity, RH Td -relative humidity calculated using
dew point, PTG - potential temperature gradient, Vis - visibility.

index measurement height missing values

1 Rain 18.0m 1%
2 SWS 18.0m 1%
3 Dew point 18.0m 18%
4 P 0.0m 2%
5 T 4.2m 16%
6 T 8.4m 3%
7 T 16.8m 2%
8 T 33.6m 2%
9 T 50.4m 2%
10 T 67.2m 2%
11 WS 33.6m 9%
12 WS 8.4m 5%
13 WS 16.8m 3%
14 WS 33.6m 9%
15 WS 74.0m 25%
16 WD avr 2%
17 WD ultrasonic 8.4m 7%
18 WD ultrasonic 16.8m 4%
19 WD ultrasonic 33.6m 9%
20 WD ultrasonic 74.0m 23%
21 RH 4.2m 21%
22 RH 8.4m 9%
23 RH 16.8m 7%
24 RH 33.6m 7%
25 RH 50.4m 9%
26 RH 67.2m 6%
27 RH Td 18.0m 20%
28 PTG 5%
29 Visibility 18.0m 1%
30 Vis-min 18.0m 1%
31 Vis-max 18.0m 1%
32 Precipitation intensity 18.0m 1%
33 Preci-min 18.0m 1%
34 Preci-max 18.0m 1%
35 Precipitation 18.0m 1%
36 Snowfall 18.0m 1%
37 Global RADIATION 18.0m 1%

tory, which is operated for the U.S. Department of Energy160

by the Alliance for Sustainable Energy. The calculations are
based on established models for solar position reported in
(Michalsky, 1988) and other sources.

The following input parameters were used: Lat: 61.8475,
Lon: 24.29472, Time zone: 2 (location parameters), Surface165

pressure 990 mbar , Ambient dry-bulb temperature 3oC, Az-
imuth of panel surface 180o, Degrees tilt from horizontal of
panel 0, Solar irradiance constant 1360.8 W/m2 (Kopp and
Lean, 2011), Shadow-band width 7.6 cm , Shadow-band ra-
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Fig. 1. Correlations between input sensors.

dius 31.7 cm , Shadow-band sky factor 0.04, Interval of a170

measurement period 0 sec.
The sensor readings are often correlated with each other.

Figure 1 visualizes the pairwise correlations computed over
non-missing data. We see distinct blocks of positive and neg-
ative correlations. For instance, relative humidity (RH) is175

negatively correlated with temperature (T).

2.2 Prerequisites

2.2.1 Setting

Suppose we have r sources generating streaming data (e.g.
weather observation sensors). Data are recorded in multidi-180

mensional vectors x ∈ <r. Our task is to nowcast the tar-
get variable y ∈ <1 (e.g. solar radiation) from these sensor
readings as inputs. The regression model is then y = f(x) =
f(x1, . . . ,xr), and the corresponding learning task is to learn
the approximate the function f from the available input-185

output data (x,y). It is important to note that we do not make
use of temporal information of the variables, that is, we pre-
dict the value of the output y at time t, with the sensor read-
ings available at the same time point t, hence the task is re-
ferred to as nowcasting. With the time index, the regression190

model is y(t) = f(x1
(t), . . . ,xr

(t)). In the rest of the paper,
we omit the time index t. For the identities of the sensors
used in the case study (r = 36), see Table 1.

Data arrive in real time, and nowcasting needs to be deliv-
ered as soon as possible, in nearly real time. The nowcasting195

performance should be stable in a sense that the expected
loss in accuracy due to possible missing values should be
minimal. Having in mind that often environment monitor-
ing sensors are operating on batteries ,or autonomous power

Figure 1. Correlations between input sensors.
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Fig. 2. Analysis of missing data patterns: (a) distribution of number of missing sensors in observations (10+ means from 10 to 36 are
missing); (b) effects of removing the most missing sensors, (c) the relation of individual sensors with the target variable (each dot represents
one sensor).

could solve the problem. That could help if mostly the same
sensors were missing all the time. We can analyze in which
way individual sensors are missing by the following experi-455

ment. First, we remove a sensor with the most missing val-
ues from the dataset, this way the observation vectors at each
30 minutes time stamp become shorter, they now include 35
sensors instead of 36. Given the updated observation vectors
we recalculate how many of those vectors contain at least460

one missing value. Then we remove the next most missing
sensor and repeat the calculation. Figure 2 (b) presents the
results. We see that removing a couple of largely missing
sensors does not make the remaining observations complete.
We would need to remove about half of the sensors in order465

to reach the stage where at least 95% of the data are com-
plete. The problem with this approach is that sensors to be
removed may carry important information about the target,
which would be lost if a lot of those sensors are removed.
Figure 2 (c) presents relation between the missing data rate470

in each sensor and the information about the target contained
in it, measured as the absolute linear correlation with the tar-
get variable. We have removed the periods where the value
of the target is equal to zero (the dark periods when there is
no solar radiation) from this analysis. We see some sensors in475

the far right corner and upper center that have high missing
value rate, but also high correlation with the target variable.
This means that excluding sensors with high missing value
rates would lead to losses of valuable information about the
target that would be useful for nowcasting.480

One more issue with the data is that sensors produce miss-
ing values not independently from each other. For example,
if one temperature value is missing, then it is likely that the
other temperature values are missing as well. It may be the
case that sensors are missing together due to some common485

external reasons, for instance, electric power outages. This
observation is illustrated by Figure 3, which plots pair-wise
correlations between missing values for different sensors.
Sensors that often are missing together are encoded in black
(dark). We see that particularly temperatures (T), relative hu-490

midity (RH), visibility and precipitation readings are often
missing together. This means that we cannot rely on redun-
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Fig. 3. Correlation of missing value patterns. High correlation (in-
dicated by darker values) means that the values are often missing
together.

dancy of the sensors such that if say a temperature reading is
missing at 33m, we can use the reading at 50m. Both read-
ings would often be missing together.495

Finally, in many cases the average duration of missing val-
ues lasts for several hours. Figure 4 presents the average du-
ration of missing values in the case study dataset for each
sensor. Since values may be missing for extended periods of
times, from this perspective we also cannot simply discard500

data with missing values, since in such cases we often would
not have model outputs for extended periods of time.

In summary, the amount of missing data is very large, at
this level data with missing sensors cannot be discarded with-
out losing valuable information. Missing values are strongly505

correlated with each other that makes it difficult and in many
cases impossible to make use of sensor redundancy or impute
missing data based on non-missing data. Removing sensors

Figure 2. Analysis of missing data patterns: (a) distribution of number of missing sensors in
observations (10+ means from 10 to 36 are missing); (b) effects of removing the most missing
sensors, (c) the relation of individual sensors with the target variable (each dot represents one
sensor).
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Fig. 2. Analysis of missing data patterns: (a) distribution of number of missing sensors in observations (10+ means from 10 to 36 are
missing); (b) effects of removing the most missing sensors, (c) the relation of individual sensors with the target variable (each dot represents
one sensor).

could solve the problem. That could help if mostly the same
sensors were missing all the time. We can analyze in which
way individual sensors are missing by the following experi-455

ment. First, we remove a sensor with the most missing val-
ues from the dataset, this way the observation vectors at each
30 minutes time stamp become shorter, they now include 35
sensors instead of 36. Given the updated observation vectors
we recalculate how many of those vectors contain at least460

one missing value. Then we remove the next most missing
sensor and repeat the calculation. Figure 2 (b) presents the
results. We see that removing a couple of largely missing
sensors does not make the remaining observations complete.
We would need to remove about half of the sensors in order465

to reach the stage where at least 95% of the data are com-
plete. The problem with this approach is that sensors to be
removed may carry important information about the target,
which would be lost if a lot of those sensors are removed.
Figure 2 (c) presents relation between the missing data rate470

in each sensor and the information about the target contained
in it, measured as the absolute linear correlation with the tar-
get variable. We have removed the periods where the value
of the target is equal to zero (the dark periods when there is
no solar radiation) from this analysis. We see some sensors in475

the far right corner and upper center that have high missing
value rate, but also high correlation with the target variable.
This means that excluding sensors with high missing value
rates would lead to losses of valuable information about the
target that would be useful for nowcasting.480

One more issue with the data is that sensors produce miss-
ing values not independently from each other. For example,
if one temperature value is missing, then it is likely that the
other temperature values are missing as well. It may be the
case that sensors are missing together due to some common485

external reasons, for instance, electric power outages. This
observation is illustrated by Figure 3, which plots pair-wise
correlations between missing values for different sensors.
Sensors that often are missing together are encoded in black
(dark). We see that particularly temperatures (T), relative hu-490

midity (RH), visibility and precipitation readings are often
missing together. This means that we cannot rely on redun-
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Fig. 3. Correlation of missing value patterns. High correlation (in-
dicated by darker values) means that the values are often missing
together.

dancy of the sensors such that if say a temperature reading is
missing at 33m, we can use the reading at 50m. Both read-
ings would often be missing together.495

Finally, in many cases the average duration of missing val-
ues lasts for several hours. Figure 4 presents the average du-
ration of missing values in the case study dataset for each
sensor. Since values may be missing for extended periods of
times, from this perspective we also cannot simply discard500

data with missing values, since in such cases we often would
not have model outputs for extended periods of time.

In summary, the amount of missing data is very large, at
this level data with missing sensors cannot be discarded with-
out losing valuable information. Missing values are strongly505

correlated with each other that makes it difficult and in many
cases impossible to make use of sensor redundancy or impute
missing data based on non-missing data. Removing sensors

Figure 3. Correlation of missing value patterns. High correlation (indicated by darker values)
means that the values are often missing together.
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Fig. 4. Average duration of missing readings.

with the most missing data is also not feasible, since miss-
ing values are not concentrated in several sensors, but they510

are distributed across all the sensors and the sensors with a
lot of missing values at the same time carry relatively strong
information about the target at times when the values are not
missing. Hence, the most appropriate solution to the problem
of missing values in this setting appears to be building mod-515

els that are robust to missing data. This approach is free from
any assumptions about the missing data and allows nowcast-
ing even when all or nearly all the sensors are missing.

3.2 Prediction accuracy

Next we experimentally analyze accuracies of several lin-520

ear regression models and their robustness to missing values.
The first experiment demonstrates how we can select the best
model for deployment. The second experiment presents evi-
dence about the performance on unseen data.

Table 3 presents the errors of the regression models ALL,525

rALL, SEL, rSEL, PCA, rPCA, PLS measured on the train-
ing set using 5-fold cross validation and deterioration index
estimated on the training set. For PCA, rPCA and PLS the
number of components was fixed to k = 18, which is a half
of the original number of input sensors, and explains 99% of530

the variance. The cumulative percent variance method was
used for selecting k, which is recommended as one of the
most reliable methods in the literature (Valle et al., 1999).
Figure A1 in the Appendix provides a complementary infor-
mation about the variance explained by PCA components.535

Later in this section we will provide a sensitivity analysis to
different values of k.

This analysis is performed from the perspective on an an-
alyst, making a decision on which model to deploy. Cross
validation is used to avoid potential overfitting of the model540

parameters to the training data. Complementary information
on the goodness of fit and confidence intervals of the regres-
sion coefficients is presented in Appendix B.

In case the analyst bases the decision only on the offline
analysis of validation errors, she would select ALL for de-545

ployment, since it shows the lowest error, while PCA and
rPCA show nearly the highest error. However, the deteriora-
tion indexes computed for these models suggest the opposite:
rPCA shows the best, while ALL shows the worst deteriora-

Table 3. 10-fold cross validation errors (RMSE ) measured on the
training dataset and deterioration index (d).

ALL rALL SEL rSEL PCA rPCA PLS

RMSE 19.0 21.6 20.5 21.9 21.7 21.8 20.8
d 1122710 537 362708 451 -109 -117 6121

tion index value. The analyst now can theoretically compare550

the robustness of two models, for instance, ALL and PCA,
using the criteria from Eq. (11), which gives

m? = (r− 1)
[RMSE (PCA)]2− [RMSE (ALL)]2

d(ALL)− d(PCA)

= (36− 1)
(21.8)2− (19.0)2

1122710− (−117)
≈ 10−4.

555

The result m? = 10−4 means that, if we expect at least one
sensor reading to be missing in ten thousand observations, it
is better to deploy rPCA than ALL. Recall that in the data
about 2.4 sensors are missing on average in every observa-
tion. Hence, in this situation it is clearly worth deploying560

rPCA, instead of a standard linear regression, even though
the ordinary regression may be more accurate when no data
is missing.

Let us consider the regularized version of ordinary regres-
sion rALL and rPCA. rALL shows better cross-validation565

accuracy than rPCA on the training data, and not that bad
deterioration index, as ALL. For rALL and rPCA m? = 0.4,
which means that it is still worth deploying rPCA.

How about non regularized PCA? The performance of
PCA and rPCA seems very close to each other. For PCA and570

rPCA m? = 13.1, which means that rPCA is expected to be
more accurate if more than 13 sensors are missing, which is a
bit too pessimistic for our case study data. Hence, the analy-
sis suggests to chose PCA for deployment. the test set, which
we analyze.575

The following analysis simulates online operation after de-
ployment. The regression models are trained on the training
set and then sequentially tested on the test set. Table 4 reports
the testing results of the regression models ALL, rALL, SEL,
rSEL, PCA, rPCA, PLS (k = 18).

Table 4. Nowcasting errors (RMSE ) on the testing dataset.

ALL rALL SEL rSEL PCA rPCA PLS NAI

full set 175.8 20.4 127.8 20.3 19.5 19.5 25.7 22.9

non-missing 17.9 19.2 18.8 19.7 19.6 19.6 19.3 22.9
missing 233.4 21.3 169.2 20.7 19.4 19.4 29.7 22.9

580

The regularized principal component regression rPCA
demonstrates the best performance on the test data

Figure 4. Average duration of missing readings.
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Fig. 5. Analysis of residuals.

(RMSE = 19.49), closely followed by PCA without reg-
ularization (RMSE = 19.52). The other regularized ap-
proaches outperform rSEL and rALL perform notably585

worse (RMSE = 20.43 and 20.28), but still outperform the
naive baseline NAI (RMSE = 22.88). The unregularized ap-
proaches PLS, SEL and ALL perform much worse than the
baseline and illustrate well the dangers presented by mas-
sively missing values.590

It is interesting to note that the analyzed strategy combin-
ing linear regression with mean replacement Žliobaitė and
Hollmén (2013) theoretically approaches NAI performance
as more values go missing. If all the input values are miss-
ing, then the predictor becomes NAI automatically.595

To analyze the performance further we divide the test
data into non-missing (44%) and missing observations (56%)
parts and inspect the errors on these sub-sets separately. We
see that the performance data of all the models is similar
when there is no missing data, with the ordinary regression600

ALL having an advantage in accuracy, since it does not dis-
card any information from the input data. However, the non-
regularized models (ALL, SEL and PLS) fail badly when
there is missing data, while the regularized rSEL and rALL
lose some accuracy, but still remain competitive. Both non-605

regularized and regularized PCA remain nearly insensitive to
missing data.

Figure 5 plots the distribution of absolute residuals for
each approach. We can see that most of the errors (residu-
als) are concentrated around 10, which is not bad, given that610

the range of the target variable is from 0 to 100. It means
that most of the predictions do not deviate too much from the
true. We can also see that NAI has less probability mass on
the left hand side, where the most accurate predictions are.
As expected, intelligent predictors do better than NAI. Only615

the unregularized approaches ALL and SEL have any proba-
bility mass on the far right, which means that they occasion-
ally produce predictions that may exceed the maximum of
the true target. We can conclude from this investigation, that
predictions by most of the approaches are reasonably stable,620

and outliers in predictions do not pose any major threats.
Next, let us analyze sensitivity to the parameter setting. So

far we used a fixed number of components (k = 18) for PCA,
rPCA, PLS and the same number of selected features for SEL
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Fig. 6. Nowcasting error as a function of components retained (top
plot - all models in log scale, bottom plot - best models zoomed in).

and rSEL. Figure 6 the testing errors (RMSE ) as a function625

of k.
An important observation can be made from this plot.

The regularized approaches rSEL, rPCA performs reason-
ably well at all variants of the parameter k, while the non-
regularized models SEL, PCA and PLS perform poorly when630

a large number of components is retained. In such a case the
resulting models are still similar to ALL, which uses all the
available information. ALL, rALL and NAI do not depend
on the parameter k, but are also included for comparison.
We also observe that PLS becomes very effective at low k,635

but there is a risk of setting k incorrectly (e.g. around 25) in
which case PLS gives the worst results. Therefore, we rather
recommend using rPCA, which gives stable and accurate re-
sults even in k is sub-optimal.

Finally, we visually analyze the model outputs made by640

the baseline approach ALL and the recommended regular-
ized approach rPCA (k = 18). Figure 7 plots four 3-day snap-
shots from year 2012: 1-3 January, 1-3 April, 1-3 July and 1-
3 October. It is important to emphasize that here we plot the
raw outputs of the classifiers to better illustrate the effects of645

regularization, whereas when calculating the numerical er-
rors we post-process all the model outputs to fall into the
same interval as the original target ([0,100], where 0 means
no irradiance is observed, and 100 (%) means all the theoret-
ically possible irradiance is observed). That is, if the predic-650

tion is less than 0, we correct it to 0, and if the prediction is
larger than 100, we correct it to 100. That makes the base-
line classifiers more competitive (and hence is more prudent
way of quantitative evaluation). We see from the figure that
the baseline ALL sometimes fails to extremes (particularly655

in January and April plots), while the regularized approach
rPCA remains stable. In July there are only a couple situa-
tions when ALL has very poor performance (we see a green
inclination on day #2 and a green peak on day #3). In Oc-

Figure 5. Analysis of residuals.

7171

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-print.pdf
http://www.atmos-meas-tech-discuss.net/7/7137/2014/amtd-7-7137-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
7, 7137–7174, 2014

Regression models
tolerant to massively

missing data

I. Žliobaitė et al.
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(RMSE = 19.49), closely followed by PCA without reg-
ularization (RMSE = 19.52). The other regularized ap-
proaches outperform rSEL and rALL perform notably585

worse (RMSE = 20.43 and 20.28), but still outperform the
naive baseline NAI (RMSE = 22.88). The unregularized ap-
proaches PLS, SEL and ALL perform much worse than the
baseline and illustrate well the dangers presented by mas-
sively missing values.590

It is interesting to note that the analyzed strategy combin-
ing linear regression with mean replacement Žliobaitė and
Hollmén (2013) theoretically approaches NAI performance
as more values go missing. If all the input values are miss-
ing, then the predictor becomes NAI automatically.595

To analyze the performance further we divide the test
data into non-missing (44%) and missing observations (56%)
parts and inspect the errors on these sub-sets separately. We
see that the performance data of all the models is similar
when there is no missing data, with the ordinary regression600

ALL having an advantage in accuracy, since it does not dis-
card any information from the input data. However, the non-
regularized models (ALL, SEL and PLS) fail badly when
there is missing data, while the regularized rSEL and rALL
lose some accuracy, but still remain competitive. Both non-605

regularized and regularized PCA remain nearly insensitive to
missing data.

Figure 5 plots the distribution of absolute residuals for
each approach. We can see that most of the errors (residu-
als) are concentrated around 10, which is not bad, given that610

the range of the target variable is from 0 to 100. It means
that most of the predictions do not deviate too much from the
true. We can also see that NAI has less probability mass on
the left hand side, where the most accurate predictions are.
As expected, intelligent predictors do better than NAI. Only615

the unregularized approaches ALL and SEL have any proba-
bility mass on the far right, which means that they occasion-
ally produce predictions that may exceed the maximum of
the true target. We can conclude from this investigation, that
predictions by most of the approaches are reasonably stable,620

and outliers in predictions do not pose any major threats.
Next, let us analyze sensitivity to the parameter setting. So

far we used a fixed number of components (k = 18) for PCA,
rPCA, PLS and the same number of selected features for SEL
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Fig. 6. Nowcasting error as a function of components retained (top
plot - all models in log scale, bottom plot - best models zoomed in).

and rSEL. Figure 6 the testing errors (RMSE ) as a function625

of k.
An important observation can be made from this plot.

The regularized approaches rSEL, rPCA performs reason-
ably well at all variants of the parameter k, while the non-
regularized models SEL, PCA and PLS perform poorly when630

a large number of components is retained. In such a case the
resulting models are still similar to ALL, which uses all the
available information. ALL, rALL and NAI do not depend
on the parameter k, but are also included for comparison.
We also observe that PLS becomes very effective at low k,635

but there is a risk of setting k incorrectly (e.g. around 25) in
which case PLS gives the worst results. Therefore, we rather
recommend using rPCA, which gives stable and accurate re-
sults even in k is sub-optimal.

Finally, we visually analyze the model outputs made by640

the baseline approach ALL and the recommended regular-
ized approach rPCA (k = 18). Figure 7 plots four 3-day snap-
shots from year 2012: 1-3 January, 1-3 April, 1-3 July and 1-
3 October. It is important to emphasize that here we plot the
raw outputs of the classifiers to better illustrate the effects of645

regularization, whereas when calculating the numerical er-
rors we post-process all the model outputs to fall into the
same interval as the original target ([0,100], where 0 means
no irradiance is observed, and 100 (%) means all the theoret-
ically possible irradiance is observed). That is, if the predic-650

tion is less than 0, we correct it to 0, and if the prediction is
larger than 100, we correct it to 100. That makes the base-
line classifiers more competitive (and hence is more prudent
way of quantitative evaluation). We see from the figure that
the baseline ALL sometimes fails to extremes (particularly655

in January and April plots), while the regularized approach
rPCA remains stable. In July there are only a couple situa-
tions when ALL has very poor performance (we see a green
inclination on day #2 and a green peak on day #3). In Oc-

Figure 6. Nowcasting error as a function of components retained (top plot – all models in log
scale, bottom plot – best models zoomed in).
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Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|
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Fig. 7. Visualization of nowcasting (each plot shows 3 days).

tober both approaches perform similarly. Unlike ALL, rPCA660

perform stable and does not show extreme failures.

4 Summary and Conclusions

In environmental monitoring, continuous and comprehensive
measurement of the environment leads to streaming data set-
ting. Nowcasting in such settings is a demanding task. We665

performed a case study in modeling solar radiation based on
SMEAR measurement data set, where model outputs are ex-
pected to be available continuously in spite of often missing
sensor readings. We also experimentally analyzed the miss-
ing data patterns in our data set.670

We aimed at nowcasting the amount of global radiation,
relative to the theoretical maximum, with the help of mea-
sured meteorological variables. Due to the need to provide
instantaneous outputs in the data streaming setting, as well as
limited computing power, especially when operating on au-675

tonomous power sources, we dismiss any of the sophisticated
data imputation methods, which are computationally more
demanding. We experimentally analyzed accuracies and ro-
bustness to missing data of seven linear regression models,
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Fig. A1. Cumulative variance explained by PCA components on the
training data without missing values.

and recommend using regularized PCA regression. The re-680

sults apply to linear regression models coupled with replace-
ment of missing values by a constant (mean).

The strategy that we consider does not require any so-
phisticated missing value imputation, just replacing the val-
ues with pre-defined constants. Linear regression is also685

very light computationally, it only requires r multiplications,
where r is the number of input variables, and one summa-
tion. When the model is trained, it can be recorded and oper-
ate with minimal energy consumption. If, in addition to that,
we consider a computationally heavy imputation procedure,690

such as Expectation Maximization algorithm, it would re-
quire by orders of magnitude more computing power, and
would be the dominating computing operation.

The regression itself is a powerful model, particularly con-
sidering that, if desired, one could apply non-linear transfor-695

mations to the input features, which then would make the
resulting predictions non-linear with respect to the inputs.
More importantly, linear models are theoretically well un-
derstood, and can provide guarantees with respect to perfor-
mance when there is a lot of missing data. We would argue700

that in such situations robustness of the model may be more
important than flexibility. A flexible model may on average
be more accurate, but the outputs may be extremely wrong at
times. On the other hand, a robust model may be not the most
accurate on average, but its performance would be stable and705

the errors not too large at all times. We chose linear models,
since they have theoretical guarantees for robustness. Hence,
we recommend using our established guideline in training
regression models, which themselves are robust to missing
data.710

Appendix A

Parameter selection

Figure A1 presents information on the variance explained by
PCA components.

Figure 7. Visualization of nowcasting (each plot shows 3 days).
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tober both approaches perform similarly. Unlike ALL, rPCA660

perform stable and does not show extreme failures.

4 Summary and Conclusions

In environmental monitoring, continuous and comprehensive
measurement of the environment leads to streaming data set-
ting. Nowcasting in such settings is a demanding task. We665

performed a case study in modeling solar radiation based on
SMEAR measurement data set, where model outputs are ex-
pected to be available continuously in spite of often missing
sensor readings. We also experimentally analyzed the miss-
ing data patterns in our data set.670

We aimed at nowcasting the amount of global radiation,
relative to the theoretical maximum, with the help of mea-
sured meteorological variables. Due to the need to provide
instantaneous outputs in the data streaming setting, as well as
limited computing power, especially when operating on au-675

tonomous power sources, we dismiss any of the sophisticated
data imputation methods, which are computationally more
demanding. We experimentally analyzed accuracies and ro-
bustness to missing data of seven linear regression models,
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Fig. A1. Cumulative variance explained by PCA components on the
training data without missing values.

and recommend using regularized PCA regression. The re-680

sults apply to linear regression models coupled with replace-
ment of missing values by a constant (mean).

The strategy that we consider does not require any so-
phisticated missing value imputation, just replacing the val-
ues with pre-defined constants. Linear regression is also685

very light computationally, it only requires r multiplications,
where r is the number of input variables, and one summa-
tion. When the model is trained, it can be recorded and oper-
ate with minimal energy consumption. If, in addition to that,
we consider a computationally heavy imputation procedure,690

such as Expectation Maximization algorithm, it would re-
quire by orders of magnitude more computing power, and
would be the dominating computing operation.

The regression itself is a powerful model, particularly con-
sidering that, if desired, one could apply non-linear transfor-695

mations to the input features, which then would make the
resulting predictions non-linear with respect to the inputs.
More importantly, linear models are theoretically well un-
derstood, and can provide guarantees with respect to perfor-
mance when there is a lot of missing data. We would argue700

that in such situations robustness of the model may be more
important than flexibility. A flexible model may on average
be more accurate, but the outputs may be extremely wrong at
times. On the other hand, a robust model may be not the most
accurate on average, but its performance would be stable and705

the errors not too large at all times. We chose linear models,
since they have theoretical guarantees for robustness. Hence,
we recommend using our established guideline in training
regression models, which themselves are robust to missing
data.710

Appendix A

Parameter selection

Figure A1 presents information on the variance explained by
PCA components.

Figure A1. Cumulative variance explained by PCA components on the training data without
missing values.
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